

Convert an Industry-Leading Native
Mobile App to React Native

Project Plan

Team Number: sdmay19-02

Client: Buildertrend

Adviser: Mai Zheng

Victor Amupitan –– Chief Engineer of Design

Lucas Kern –– Executive Meeting Facilitator

Michielu Menning –– Lead Report Manager

Kyle Nordstrom –– Co-Team Lead/Meeting Scribe

Francis San Filippo –– Scrum Master

Walter Seymour –– Co-Team Lead/ Team Communications Leader

Team Email: sdmay19-02@iastate.edu

Team Website: https://sdmay19-02.sd.ece.iastate.edu

Revised: December 2nd, 2018 / Version 3

SDMAY19-02 1

Table of Contents
Table of Contents 2

List of figures/tables/definitions 4

0.1 List of Figures 4

0.2 List of Tables 4

0.3 List of Definitions 4

1 Introductory Material 5

1.1 Acknowledgement 5

1.2 Problem Statement 5

1.3 Operating Environment 5

1.4 Intended Users and Intended Uses 6

1.5 Assumptions and Limitations 7

1.6 Expected End Product and Other Deliverables 8

2 Proposed Approach and Statement of Work 9

2.1 Objective of the Task 9

2.2 Functional Requirements 9

2.3 Constraints Considerations 10

2.4 Previous Work And Literature 11

2.4.1 Existing Works 11

2.4.2 Relevant Literature 13

2.5 Proposed Design 14

2.6 Technology Considerations 15

2.7 Safety Considerations 17

2.8 Task Approach 17

2.9 Possible Risks And Risk Management 17

2.10 Project Proposed Milestones and Evaluation Criteria 18

2.11 Project Tracking Procedures 19

SDMAY19-02 2

2.12 Expected Results and Validation 19

2.13 Test Plan 19

3 Project Timeline, Estimated Resources, and Challenges 20

3.1 Project Timeline 20

3.2 Feasibility Assessment 21

3.3 Personnel Effort Requirements 22

Table 1: Major Tasks 24

3.4 Other Resource Requirements 24

3.5 Financial Requirements 24

4 Closure Materials 25

4.1 Conclusion 25

4.2 References 25

4.3 Appendices 27

SDMAY19-02 3

List of figures/tables/definitions

0.1 LIST OF FIGURES

● Figure 1: Principles of Component-Based Architecture
● Figure 2: Semester 1 Gantt Chart
● Figure 3: Semester 2 Gantt Chart
● Figure 4: Semester 1 Gantt Chart Dates
● Figure 5: Semester 2 Gantt Chart Dates
● Figure 6: Semester 1 Bar Graph by Duration
● Figure 7: Semester 1 Bar Graph by Duration

0.2 LIST OF TABLES

● Table 1: Major Tasks

0.3 LIST OF DEFINITIONS
● BT:​​ Buildertrend, our Client.
● Components:​​ Unit of code that deals with a specific feature or

functionality. Components break apart the project into smaller subtasks.
● Component-Based Development:​​ A software development process that

emphasizes the separation of concerns throughout the project.
● DRY programming:​​ Don’t repeat yourself programming (ie duplicating

logic)
● Front-end: ​​The part of the development that deals with converting data

into a graphical interface for users to interact with.
● Jake:​​ Director of Software Development at Buildertrend.
● Native:​​ Software that is developed for use on a particular platform or

device.
● React:​​ A JavaScript library for building user interfaces.
● React Native:​​ A framework for building native applications with React.
● React Router:​​ Specifies the components that will be displayed with certain

routes.
● Redux:​​ A predictable state container for JavaScript applications.
● SaaS:​​ Software as a service
● Software Architecture:​​ High-level structures of a software system.

SDMAY19-02 4

1 Introductory Material

1.1 ACKNOWLEDGEMENT

We would like to give a special thanks to the following members of Iowa State and
Buildertrend for the assistance they have provided throughout our project.

● Rich Kalasky
● Daric Teske
● Mai Zheng

1.2 PROBLEM STATEMENT

The problem that Buildertrend currently faces is that the mobile application that they use
could be created and maintained more efficiently. They currently are updating and
maintaining two applications, one for iOS and one for Android. This makes the software
harder to maintain. Maintaining two applications that are in more obscure languages is
costing Buildertrend time and money. They are looking for a way to save money, time, and
make the overall development process easier in the future.

Buildertrend had the idea to recreate the application with React Native. A React Native
application can solve their problems by maintaining one app instead of two. With React
Native, the JavaScript code is ran by the phone’s JavaScript engine instead of being run
natively in most cases. There only needs to be one application, and this means BT can
drastically cut the number of resources needed to maintain and update the application.
Furthermore, by transitioning into React components, the project code base will be much
cleaner. Reusing and managing components makes for a more efficient and maintainable
development process.

1.3 OPERATING ENVIRONMENT

This is a mobile application, and the main users are construction workers. This means the
environment that the application will be used in may vary greatly. Because these
construction sites are sometimes in remote locations that may have a poor internet
connection, the efficiency of the application is key. It is also possible that the users may
not always have direct access to the device itself. This is in part due to the nature of the
industry. With massive amounts of manual labor being done on-site, it may not be safe or
viable for them to be on their phone actively checking the application. Likewise,
construction sites are not the only place the application will be used. The application is
used by many project managers off-site or in an office setting. This means that it will be
used in places with more predictable conditions. Therefore, the application needs to
perform consistently and serve as a productive tool for the construction industry.

SDMAY19-02 5

Overall, there does not seem to be any direct safety hazards, other than the general
dangers of using a mobile device; e.g. texting and driving. When using this application,
the environment may impact the quality of the product. For this reason, we must consider
the variety of uses and environments the application will be subjected to.

1.4 INTENDED USERS AND INTENDED USES

There is a multitude of different types of users that will be working with the application.
These include:

● Construction Managers - These are the people who will be working with projects,
but also have capabilities that the average user may not have.

● Construction Workers - Common users that will have less access than the
managers.

● Clients - People who paid for the construction job. They are able to track their jobs
and request changes.

● Sales Employees - They will be able to track the projects that they are assigned to.
They will also have access to internal features.

● Developers - Buildertrend Developers will also have access to the application. They
will have their own specific features to oversee the product.

The construction managers use of the application will be to manage the project and to
manage the people under them. These uses will be to keep the construction projects on
schedule and to make sure employees are up to speed on project expectations. The
workers themselves will be able to use the app to handle tasks they have completed, clock
into work, and be in contact with the manager. In addition, the construction managers
will be able to use the application to track leads and handle financial issues.

The client's main use of the application will be to oversee the progress of their project(s).
They are also able to contact the construction manager regarding any inquiries about
change orders. They are capable of communicating fluidly with the project manager in
case any legal agreements or documents require a signature.

Sales employees will be able to use the application to track their project managers and
make sure that they are not having any issues with the application. Above the sales team,
the developers will have access to virtually any functionality. This is to account for any
testing and adjustments they may want to explore.

SDMAY19-02 6

1.5 ASSUMPTIONS AND LIMITATIONS

● Assumptions
○ Users will have access to a mobile device.
○ The primary user will be construction managers and workers.
○ The backend of the application, which will not be provided to us, will

handle all security measures.
○ The backend will handle any financial transactions or legal transactions

between the builder and clients.
○ The backend will give us data in an efficient and clean way.
○ The backend of the application will handle all the accepted file extensions.
○ No one has access to the backend code besides us and employees of

Buildertrend.
○ All margins and styles will be standard to cell phones.
○ The Code will be tested by the QA at Buildertrend.

● Limitations
○ The speed of the product relies on the phone it is on and some old phones

may not handle the software as well.
○ Usage of the application depends on a solid connection to the internet.
○ Many of the developers in our group do not have much experience with

React, Redux, and some other tools.
○ Clients pay a lot of money to use the product, so the product must be at a

high standard.
○ The product must be completed by the end of the second semester.
○ The functionality of the application must match the functionality of the

current application.

SDMAY19-02 7

1.6 EXPECTED END PRODUCT AND OTHER DELIVERABLES

Throughout the development cycle, there will be a multitude of minor and major
deliverables. Some of these delivered items will include weekly reports, schedules, and
documentation. We decided to deliver our prototypes in this manner due to the
expectations of our client. Moreover, our main deliverables are as follow:

● Initial Prototype​​ - This will be a fully functioning React Native project. It will
have a functioning menu, and the user will be able to pull up the list of
components. There may be a few subcomponents completed, but the main
purpose is to establish user movement throughout the application. This will lay
out the foundation for the following deliverables and will serve as a framework for
further development.

● Structured Prototype​​ - This deliverable will be a project management application
with the core features implemented. It will not be a completed version of the
initial prototype, but rather a partially finished version. It will have all the same
functionality and structure, but some of the components will still require
completion. In order to fill the necessary features, the components within the
existing application will be ordered by priority. This prototype is designed to gauge
our progress with a semester of learning many new technologies. There will be a
demo with our client, and this will demonstrate both our progress with the
application and our improvement with these new skills. This also lays the
groundwork for future development and gives us flexibility based off of client
feedback.

● Final Prototype​​ - This is the final product that we will present to Buildertrend.
Upgrading from the structured prototype, it will have all the features the original
application has. We will have all the existing components built out and fully
functioning. There is potential that we may add new features as the client and we
see fit.

● Documentation​​ - This will be the API for the public functions that we use while
making the product. This will be used for the people who will be working on the
project in the future. It is also be used for developers at the company who may
have questions about the application.

We estimate completion and delivery of this project to be May 2019, the end of the Spring
2019 semester.

SDMAY19-02 8

2 Proposed Approach and Statement of Work

2.1 OBJECTIVE OF THE TASK

The desired outcome of this project is to have a smooth application running on both
Android and iOS that hits on all of the functional requirements, nonfunctional
requirements, and deliverables.

The internal aspects of this task are to completely recreate two applications using React
Native, a newer technology. By successfully merging two different projects into one, we
are helping Buildertrend eliminate an unnecessary project. By having both Android and
iOS devices using the same application, it ensures that all the features are uniformly
applicable across the entire user base.

After this is complete, every construction manager that utilizes this industry-leading
software will be able to accurately and successfully construct their guzzling projects.

2.2 FUNCTIONAL REQUIREMENTS

Our application will have different levels of clearance depending on the role of the user.
As typical each user will have an account to log into. This will be handled on the backend
by Buildertrend. They will then have access to all or some of the following features:

1. Daily Logs​​ - Record of logs with messages to stakeholders which can include
information such as dates, attachments, tags, and weather conditions.

2. To-Do’s​​ - Tasks the user can make for stakeholders. Can include text,
attachments, assignees, and reminders.

3. Schedules​​ - The schedule includes calendars, Gantt charts, list views, agendas,
workday exceptions, and functionality to add a task to the schedule.

4. Change Orders​​ - Change order can be created, updated, deleted and updated.
Includes any information that would be on a real change order.

5. Selections​​ - Component where job site managers can make selections about a job
site. Can view them by list, grid, hierarchy, category, location, and allowance.
Users can CRUD selections.

6. Warranty​​ - Warranty section where users can CRUD warranties on associated
jobs.

7. Job Info​​ - Job info section shows the details of the selected job and allows users to
CRUD jobs.

8. Quick Actions ​​- Quick actions is a part of the navbar that links to frequently used
components. These include - Adding photos, daily logs, to-dos, messages, and
documents.

9. Photos ​​- Component that allows users to upload photos and store them in custom
albums.

SDMAY19-02 9

10. Documents ​​- Component that allows users to upload documents and store them
in custom folders. Users can search by a document name.

11. Videos ​​- Component that allows users to upload videos and store them in custom
folders. Users can search by videos.

12. Messaging ​​- Messaging allows users to send messages and comments to other
stakeholders of the project. Also, users send surveys and notifications.

13. Financial ​​- Where users manage all financial aspects of job sites. This component
includes functionality for CRUD ops on budgets, Bill/POs, owner payments, and
bids.

14. Directory ​​- Users can store contacts for stakeholders and anyone they want a
contact form. List view of all contacts with a search bar for filtering.

15. Sales​​ - Sales component includes sections for users to record lead opportunities
and lead proposals. A calendar view of sales activities can be viewed.

16. Misc​​ - Miscellaneous features include a contact us page, logout button and links to
the full site.

2.3 CONSTRAINTS CONSIDERATIONS

The non-functional requirements of our product include:

● Responsive:​​ The mobile application should be user-friendly by providing quicker
results and reducing lag.

● Reliability:​​ The mobile application should be reliable regardless of network
connections because some users might not have access to the internet.

● Energy efficient:​​ The application should be energy efficient because users might
be in remote locations with limited power supply.

● Security:​​ The application contains user data so security measures should be taken.
Security measures include authentication, authorization, and encryption.

● Performance:​​ The application is expected to have close to real-time results so it
should be efficient with handling user requests.

● Availability:​​ The application should be available at any point as long as the phone
is active.

● Maintainability:​​ The application is to be built in a modular way using a
component architecture to make it easily maintainable

● Data Integrity:​​ The application is to be built taking data integrity by displaying
and sending accurate data and maintaining consistency.

● Usability:​​ The application should be user-friendly and easy to use without a
detailed explanation of how the application works.

The constraints that we are considering in this project are as follows:

● Labor Resources:​​ Our team has a fixed sized with each member having their own
strengths. In addition to classes, all of us are working jobs on the side. The balance
between school and work will be essential throughout the semester.

SDMAY19-02 10

● Technical:​​ Our client has already chosen the technology they want the product to
be developed with - which is React Native.

● Time:​​ The product must be completed before the final presentation of the Senior
Design class.

● Integration with Pre-existing Technology: ​​We are only tasked with building
the client end of the application. In order to access and save user data as well as
authentication services, we must integrate with BT’s pre-existing API endpoints.
We do not have any documentation for their backend and we must capture HTTP
traffic from their existing front end to discover the format of the requests.

Standards for software engineering relate to data security and safe transaction handling.
Our application will not handle any sensitive data such as credit cards which would use
the PCI compliance standard. However, many standards can be used as a framework to
improve the overall quality of our application. ​ISO/IEC/IEEE 29119 is a standard for
software testing which outlines how to test software for any organization. ISO/IEC 12119 is
a standard for how packages are delivered to the client. ISO/IEC 9126 details how the
quality of a software product is determined. We should keep this standard in mind at the
end of the project so all stakeholders have a guideline for evaluating product quality.

While developing this project, we will be following the IEEE Ethics and Compliance which
includes the IEEE Code of Conduct and IEEE Code of Ethics. These standards, in
summary, describe ethical rules that should be followed in the development process and
with the product developed. In order to uphold IEEE’s code of ethics, we must ensure the
product we deliver is of the utmost quality and sees to benefit all stakeholders involved.
Also, within the team, ethics can be applied:

● While developing this project, team members have to respectful of each
other.

● The product should not be harmful to the users

2.4 PREVIOUS WORK AND LITERATURE

2.4.1 Existing Works

Our project is focused on the development of an application using React Native. There are
some applications that provide similar functionality, but the focus of the project is to
rebuild the application using a new framework (Reference #9). The work we are providing
is for employees of Buildertrend to continue the development of their application.
Platforms that provide a similar solution to React Native include Apache Cordova and
Google’s Flutter. Google’s Flutter does much of the same things as React Native but since
it is in its infancy the stability of the product is not as high as React Native (References
#9). Apache Cordova uses a different strategy for making native code. It wraps web apps in

SDMAY19-02 11

a browser container and packages it as a mobile app(References #15). This makes the
performance much less efficient.

SDMAY19-02 12

2.4.2 Relevant Literature

All relevant literature are articles written by seasoned developers all across the industry.

Switching over to React Native will save companies immense resources by compiling
multiple teams and applications to a singular one. “ If Valtech and other developers would
begin to use React Native, they would only need one team that can create all three services
with more or less the same code”(Reference 18).

There are multiple other possible parties, libraries that do something similar, “All four
technologies allow you to build real native mobile apps for both iOS and Android”
(Reference #16), but React Native has the largest community.

Other than these scholarly articles, a main source of information would be the
documentation page of the appropriate technologies.

In addition to documentation, we will be reading various information from places such as
GitHub, StackOverflow, and other online platforms. This will help us understand what the
current techniques and approaches are for solving issues that we come across.

SDMAY19-02 13

2.5 PROPOSED DESIGN

We have a unique project because the application we are building already exists. Our job
is to remake the application using a new framework. Thus, the design for most of our
application (especially the UI design) is already complete. Our project consists of creating
the new React Native code base and recreating the components found in the Buildertrend
application. We are not responsible for creating any backend code. This leaves the
underlying architecture design to us along with design aspects relating to communicating
with Buildertrend’s API.

FIGURE 1: PRINCIPLES OF COMPONENT-BASED ARCHITECTURE

Our strategy for the architecture includes using a component-based architecture and
using a central store to save the application state. Also, instantiating an interface for API
calls. A component-based architecture allows the pieces of functionality to be replaceable,
independent, reusable, extensible, and not context specific. This will make our code DRY
and easily modifiable. One of the motivations for this project, to begin with, is having a
code base that is used for the development of both ios and android. This is a strength
because having a component-based architecture will ensure the modifiability of a unified
code base.

The other strategy for the application design is using a central store to store global state
variables. User data used across multiple components can be shared in the central store.
Each component would not need to make requests for the same data which cut down on
redundant API calls. Also, when a component needs to make an API call, the values of the

SDMAY19-02 14

call may depend on a value set by a different component. Instead of relating these two
components, the value can be accessed from the central store reducing cohesion and
satisfying the properties of the component architecture. Adding central store to store
global state is a strength of this design for the above reasons.

The API communication interface will provide all functionality for making calls to the API.
This design construction reduces repeated code by providing functions for the API routes
with the ability for components to pass in their own parameters again making the code
base DRY. This component will have access to the central store for any parameters that
come from the state of the application.

In the functional requirements section, we detail all aspects of the application that needs
to be implemented. Many of the modules can be instantiated with the same components.
For example, the search feature is common for many modules within the app. We will
create one search component that can be used in each of the modules. The functionality of
the component will replicate that of the original application.

Every design decision for this project improves the overall design of this project. Other
possible designs for this project would be a subset of the above decisions. For this project,
having all of these decisions is better than not having all of these.

2.6 TECHNOLOGY CONSIDERATIONS
● TypeScript - We picked TypeScript as the language used for development instead

of JavaScript. One reason we picked TypeScript is that it is a typed language which
will help us avoid tricky bugs; it also has other feature languages that don’t need a
transpiler like JavaScript(besides the TypeScript transpiler itself). One weakness of
TypeScript is that there might be some time spent in learning the language instead
of actual development.

● NPM - we are using NPM and Yarn as our package managers. We use Yarn
primarily for package managing because it has a lock file that will help us manage
dependencies across all our systems. NPM does offer a lockfile now but we decided
to go with Yarn because of its reputation for speed.

● Postman - we are using Postman to get the HTTP request used by the existing
mobile application to get HTTP routes to the server. Some of the alternatives were
Charles and Fiddler, but we went with Postman because most of the team has
experience with Postman.

● React Native - The client requested that we use React Native. Alternatives to this
are Flutter, Iconic, and Xamarin. The client already chose the technology we
should use so it wasn’t considered by us. One of the strengths is the popularity and
community.

SDMAY19-02 15

● Expo - Expo is a tool for mobile development. React Native does not have a
development tool like Expo available, which requires us to use both for efficient
development.

● React-Devtools Debugger - We use this for debugging React Components.
Alternatives include the IDE debugger and the mobile’s inspector. We chose
React-Devtools because it was made specifically for React/React Native so it is
geared towards what we are developing and has some specific features to React
Native.

● Redux - We are using Redux for state management within the mobile application.
Other alternatives were flux and mobx. We chose Redux because it has more
community support and user-friendly. Flux offered almost no advantages. Some of
our team members were also acquainted with Redux so we picked it over mobx.
One of the weaknesses/trade-offs with Redux is the boilerplate that has to be done
before the project can be started.

● React Router - We are using React Router for navigation within the application.
One of the strengths of this is the efficient management of navigation which
doesn’t just help us do the work of navigation but also in optimal time. Some
alternatives were React navigation, and React Native navigation. React navigation
seemed like a more immature library compared to the other two with some API
constraints. React navigation was a suitable alternative but is more difficult to set
up and didn’t seem to offer any new features that aren’t in React Router.

● NPM - we are using NPM and Yarn as our package managers. We use Yarn
primarily for package managing because it has a lock file that will help us manage
dependencies across all our systems. NPM does offer a lockfile now but we decided
to go with Yarn because of its reputation for speed.

● GitLab - We considered using another remote source control distribution, namely,
GitHub because most of our team was familiar with it, but we decided to go with
GitLab because it was already set up for us, it offered better issue tracking and
easier code review and enforcement than GitHub.

● Linting - We are using TSLint to ensure code consistency in our project. Other
alternatives include JSLint and ESLint. We picked TSLint because it is made
specifically for TypeScript while the rest of them are geared towards JavaScript.

SDMAY19-02 16

2.7 SAFETY CONSIDERATIONS

There are very little safety considerations in our project. Due to the nature of our
application being used in construction areas, we have to make sure that the product runs
reliably and efficiently to ensure that they are not waiting on the frontend of the
application.

We also have to make sure our application doesn’t cause unnecessary distractions, such as
flashing lights or loud noises. The safety of the user base is important to Buildertrend and
therefore is important to us as well.

2.8 TASK APPROACH

With all six people on the team having different class schedules, it is necessary for us to
have a reliable tracking system to ensure that work gets done efficiently without overlap.

The main immediate method we use to help keep track of tasks is the ticketing system
that’s built into the GitLab repository that we are using for the project. This is more of an
agile method.

The method we are using to keep track of the overall plan is a Gantt Chart. We have all the
major milestones laid out for the year so we can see that we are on track to finish.

To see figure, check ​Figure 2: Semester 1 Gantt Chart​ and ​Figure 3: Semester 2 Gantt Chart​.

2.9 POSSIBLE RISKS AND RISK MANAGEMENT

Title​​: Lacking Understanding of React Native Framework

Strategy​​: Avoid

Premise​​: Coming into this project, most of the team members have not used the React
Native framework. Lacking understanding of React may cause slips in schedule and loss in
quality as members take time to grasp React. Estimating the required amount of time for
tasks will be difficult because we have no understanding of our efficiency with React.

Action Plan​​: Getting as much experience with the framework will give us the best results
if we are able to make more informed guesses and utilize aspects of React that improve
quality. We plan on doing tutorials and reading documentation to understand React
better.

Title: ​​Relying on Phones

Strategy​​: Mitigate

SDMAY19-02 17

Premise: ​​React Native compiles native code for Android and iOS phones. In order to run
the application, team members need to use their phones. Relying on phones in the
workflow introduces risks such as not having a working phone, not having a charged
phone and compatibility between the phone and the application. It is possible to create
virtual devices to run the application but this may prove to be difficult.

Action Plan​​: We will work in groups so that phones can be shared if need be. There will
probably be at least one person with a working phone. Also, we will look into the option of
having virtual devices and the feasibility of this option.

Title​​: Malformed HTTP Requests

Strategy: ​​ Mitigate

Premise: ​​The application we are developing uses the Buildertrend backend functionality
through their API. However, we do not have any documentation on the API and therefore
must intercept requests on their app to find out how it is used. Not having access to the
API documentation will cause a lack of understanding and therefore may cause incorrect
or malformed HTTP requests.

Action Plan​​: Having one person dig deep into the HTTP calls and having a map of what
each does will provide other team members with the knowledge to use them correctly.
When Buildertrend’s API doesn’t return what we expected, we can rely on the person who
researched it more closely. Also, we can use our contacts at Buildertrend to ask questions
about what might be going wrong.

2.10 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

Key milestones include an initial prototype, a structured prototype and a finished product.
The initial prototype will include having an app that works on Android and iOS. This will
be the frontend and the skeleton of the product using dummy information. We will test
this by using phone simulators as well as an Expo app that allows us to run the React
Native code on our devices. We will use manual tests as well as testing frameworks such as
Jest or Enzyme.

The structured prototype will be an improved version of our initial prototype with 75% of
the capabilities required for our product. One of these key capabilities will be pulling
correct information from the Buildertrend servers. We can test this by comparing the
information on our newly built app to the old app that they use. We have been given a
dummy account by Buildertrend so we can use this account to test our app. The frontend
should already be working and displaying dummy information correctly at this point so
we will just need to test the new information being provided. This will include manual
tests as well as generated test cases that can compare the expected information with the
information being pulled in.

SDMAY19-02 18

The last milestone is the finished product. This will be when our app is displaying all the
correct information as well as having our frontend completed. Documentation for our
project will also be completed and ready to turn over to the client. The app should work
on both an Android and an iPhone. We can test our finished products on both devices as
our team has both available to them. We can compare this to the old app and to expected
values as we run manual tests to make sure this is working correctly. We will also be sure
to test with generated test cases as well as testing old tests to make sure that we did not
defect from our code as we were improving upon it.

2.11 PROJECT TRACKING PROCEDURES

To track progress our group has decided to use the GitLab issue tracker. We will use this
to create tickets of key issues that need to be resolved as well as tasks that need to be
completed. As we complete the tasks we will take note of these and continue to follow our
proposed timeline.

The tasks will be created to follow our schedule closely and work towards meeting our
milestones and eventually our deliverables. The issues that will be created will be brought
up as problems arise in our code and will be handled and dealt with accordingly. We will
continue to compare our progress with our timeline to stay on course and have our
product finished appropriately.

2.12 EXPECTED RESULTS AND VALIDATION

The desired outcome for the end of this project is to have a smooth application running on
both Android and IOS that hits on all of the functional and nonfunctional requirements.
We will ensure this desired outcome happens by staying on track with our Gantt chart and
fulfilling every task that comes this way.

A common stumbling block many teams encounter is unsustainable code. If the repository
gets populated with subpar code, it hinders the scalability of the project. Since this project
is meaningful and actually needs to be maintainable, our team decided to have a strict
code review policy that makes it so at least three other developers have to perform a code
review and approve the code.

With the intense code review in place, it helps maintain scalable code, which helps
ensures that our outcome will be scalable.

We will also have a strong testing procedure that includes manual testing on our phones
using Expo and testing frameworks ​Jest​ and ​Enzyme.

2.13 TEST PLAN

Testing is an important part of developing an application. We plan to use regression
testing throughout the development cycle. The regression tests will ensure that any newly
implemented code doesn’t break previous functionality. In order to do this, we will be
using a JavaScript testing library called Jest. In addition to the regression testing, we will

SDMAY19-02 19

be using functional testing. This will ensure that each component is outputting the
necessary items.

Enzyme ​will be used regressively to make sure that every tag is used appropriately for
every component. This will ensure every component renders everything it is supposed to.
This will, in turn, check the functionality of the separate components within our
application.

We use Enzyme to test specific component rendering and behavior. Since we use are using
React Native which is component-based, we will be testing that a) components are
rendered, b) components are rendered with the correct properties, c) components have
correct state after gestures like clicking, sliding, and others. We will also be testing to see
if the correct endpoints are being called and that user input won’t interfere with the data
retrieval process. Finally, we will be testing error handling within our application which
covers correctly handling errors from the server, and errors that come during user
interactions.

3 Project Timeline, Estimated Resources, and Challenges

3.1 PROJECT TIMELINE

Our project timeline has been broken into three phases. These phases are based off our
milestones which are an initial prototype, a structured prototype, and a final product.
These phases take up a duration of the Fall 2018 semester as well as the Spring 2019
semester. The phases involve the implementation of that prototype, testing, and other
steps that our team will take to complete the finished product.

The phases are broken up into two to three-month segments with the structured
prototype being the shortest one. This structured prototype will be built off of the initial
prototype and eventually, the finished product will be completing the structured
prototype to be packaged and ready to present to the client. We believe creating the basic
prototype will take longer as we work to create components to build our app off of. The
second phase will be applying these components to different capabilities of the app. The
final phase will involve documenting our code as well as testing and preparing our
software for the client. Please reference our Gantt charts represented in figure 1 and 2 to
view the timeline described below.

Phase 1: Initial Prototype (9/1-10/31)

● Building the skeleton code
● Basic app functionality

○ Basic components
○ Homepage
○ Login page

SDMAY19-02 20

● Having the app work on iOS and Android
● Testing of app functionality

Phase 2: Structured Prototype (10/31-11/30 & 1/14-2/8)

● Increased app functionality
● Successful compatibility with BT services
● Testing

○ App functionality
○ Compatibility with BT services
○ Regression testing

Phase 3: Final Product (2/9-4/30)

● Finalize app functionality
● Deliverables completed

○ Documentation
● Functional and Non-functional requirements completed
● Testing

○ Functionality
○ Regression testing
○ Requirements

● Packaged and ready to deliver

3.2 FEASIBILITY ASSESSMENT

The application we create should meet the standard of an industry leading company.
Although there are challenges that lay in the way, the application will meet the functional
requirements that were asked of us. This React Native app will solve the companies
problems of maintaining two applications and saving them money and time.

Going into the project, it is clear that there are some strengths in our solution that may
help us succeed. For example, almost everyone in the group has experience in frontend
development. TypeScript is very similar to JavaScript, so there should not be many
roadblocks there. React is also a tool that most of our team commonly uses and will be
essential to completing this task. Another advantage we have is that a few of our members
have experience working with Buildertrend. Frank, Walter, and Kyle are past interns, so
communication with the client will be effective, and we already have an idea of how the
desired product can be created. Our greatest strength may be that our team has
experience working together. We have worked on projects in the past, and we seem to
have a great work dynamic.

There are several weaknesses in this proposed solution. Since every member has other
responsibilities, each developer has to juggle school, their current jobs, and much more.
Another weakness is how it can be difficult for us to have consistent times with our client
and advisor that every developer can attend. All of us have different schedules which can

SDMAY19-02 21

also slow down the development process in general. The only way to complete the project
thoroughly and on time will be to keep each other in check.

Another weakness in our proposed solution comes from the fact that Buildertrend, our
client, will not be giving us access to the backend API. This means that our process will be
slowed down in order to find a way to monitor API calls. Another roadblock is the fact
that our client is a long distance from where we are located. If we have a question or
something that direly needs to be discussed, this may be a problem.

A final weakness of this proposed solution is the time we have to complete this project.
The project that we have is literally the entire Buildertrend mobile application.
Buildertrend has been working on this project with dozens of developers for years. It will
be a challenge to complete every single component that they have built out for the
previous native apps. We would like to complete all the components, but it will require a
lot of effort from all members. Ideally, we would like there to be little work left for
Buildertrend to deploy our project once we are done.

Overall, the strengths of our proposed solution will outweigh the weaknesses. Where we
will have to spend the time to learn new technologies, we also all have the basic skills to
program efficiently with frontend tools. We all have different skill sets, but our
communication skills allow us to overcome individual weaknesses that we face. There is a
lot to do, but with an effective schedule, members keeping others in check, and clear
communication with all parties, we will have a productive and rewarding development
process.

3.3 PERSONNEL EFFORT REQUIREMENTS

This section is a work in progress. The estimated hours are generally how long we expect
tasks to take. Since we have not completed most of the tasks, it actual hours could change.

Below lies Table 1, that contains all of the major tasks, with description and estimated
hours necessary for each task.

Task Description Estimated Hours

Understand project Contact Client, discuss expectations, and
mess around with demo applications

20 hours

Research
technologies to use

Researching possible software frameworks
and packages and weight the pros and cons
for each one

30 hours

Create initial
application

Create skeleton of React Native app, Inject
Redux into project, install dependencies,
and everything else we agreed on from
researching technologies

15 hours

SDMAY19-02 22

Set up environment Make sure that the environment is set up
for every device for each team member

10 hours

Research on
software
Architecture

Before we get too far into the project,
settling on an architecture to model the
files is crucial

10 hours

Create Scripts Scripts will help speed up the development
process for the future. Scripts to start
application and test

30 hours

Discover API Since we are not given the API for the
backend calls, we have to use another tool,
Postman, to track every API call.

50 hours

List Components to
create

Go through the old application and list out
every possible component and where it is
used.

20 hours

Create Menu and
framework

Having a main infrastructure to help the
user move around the application is
necessary before we get into the big parts

30 hours

Individual
Development

Split up components for each member 150 hours

Weekly Reports Keep track of previous week’s work and
deploy them into a report every week

30 hours

Write Tests Create tests that assure correct
functionality and display

50 hours

Code Review Not just developing, but reading other
people’s code before their work is officially
approved into the repository.

100 hours

Project Plan Come together to work on the massive
project plan report

30 hours

Document Software Team members need to document all
software code, architectures used, and
design patterns used.

50 hours

Test requirements Test requirements we laid out and address
them if need be

20 hours

SDMAY19-02 23

Table 1: Major Tasks

3.4 OTHER RESOURCE REQUIREMENTS

Hardware is a resource outside of finance that is required to develop this application.
Every team member has to have a computing device that can have access to the internet
and have a text editor. Ideally, the computer will have enough processing power to run an
IDE that is capable of installing NPM packages and running the application.

Lastly, having a smartphone handy will help with the manual testing of this application.
Allowing each developer to complete regression tests, generated tests, and manual tests.

3.5 FINANCIAL REQUIREMENTS

The tools that we are using are all currently open-source. React Native and Redux were
created by Facebook and can be used freely by the community. There are also tools such
as editors, learning tools, and example projects that are also free to use. The majority of
the software is always free for personal use, but if the creators of a tool decide to make it
cost for a business such as Buildertrend to use, we will expect Buildertrend to cover these
costs. There is no exact expected cost, but we are hoping the cost of creating the software
will only cost us time. We are early in the development process, so we can update the cost
as we go if we run into problems. Normally, there would be the cost of paying the
developers, but we are working for free.

Hypothetically, if we were not students and were getting paid, there will be a cost factor to
for this project. According to Table 1, this project would take an estimate of 645 hours.
Going off our market value of $80,000 a year, the hourly wage would be $38.46. The total
cost for labor would be $24,806.70.

SDMAY19-02 24

4 Closure Materials

4.1 CONCLUSION

Updating an application from pre-existing legacy code is a huge part of software
development in today's technology industry. Many times companies find themselves
wasting resources by having developers rewrite or remake existing applications on
separate platforms.

Our project aims to transition two separate native applications into a common React
Native application. This will reduce the cost of upkeep and allow a fluid user experience
across all platforms, saving Buildertrend both time and money.

In order to make this transition as smooth as possible, it will take the collaboration of all
six team members as well as continuous communication with our client. Along the way,
our academic advisor Mai Zheng will be there as a support system for any questions or
concerns that may come up.

As outlined in this project plan, we will continue to work towards transitioning this
industry-leading software to a more up to date technology. By doing this we will not only
improve the efficiency of Buildertrend’s development team, but we will also create a
refined product that extends to home builders around the world. This product will benefit
the likes of Buildertrend, the builders, and their clients alike.

4.2 REFERENCES

Academind.com. (2018). ​React Native vs Flutter vs Ionic vs NativeScript vs PWA​. [online]
Available at:
https://academind.com/learn/flutter/react-native-vs-flutter-vs-ionic-vs-nativescript-vs-pw
a/ [Accessed 29 Nov. 2018].

Airbnb.io. (2018). ​API Reference · Enzyme​. [online] Available at:
https://airbnb.io/enzyme/docs/api/ [Accessed 29 Nov. 2018].

Bowman, D. (2018). ​Component Style​. [online] Medium. Available at:
https://medium.com/@dbow1234/component-style-b2b8be6931d3 [Accessed 29 Nov.
2018].

Buildertrend.com. (2018). ​Construction Project Management Software | Buildertrend​.
[online] Available at: https://buildertrend.com/ [Accessed 29 Nov. 2018].

Cordova.apache.org. (2018). ​Apache Cordova​. [online] Available at:
https://cordova.apache.org/ [Accessed 29 Nov. 2018].

SDMAY19-02 25

Diva-portal.org. (2018). [online] Available at:
http://www.diva-portal.org/smash/get/diva2:998793/FULLTEXT02 [Accessed 29 Nov.
2018].

Expo. (2018). ​Expo​. [online] Available at: https://expo.io/ [Accessed 12 Nov. 2018].

Facebook.github.io. (2018). ​React Native · A Framework for Building Native Apps Using
React​. [online] Available at: https://facebook.github.io/react-native/ [Accessed 29 Nov.
2018].

Flutter.io. (2018). ​Flutter - Beautiful native apps in record time​. [online] Available at:
https://flutter.io/ [Accessed 12 Nov. 2018].

House, C. (2018). ​8 Key React Component Decisions – freeCodeCamp.org​. [online]
freeCodeCamp.org. Available at:
https://medium.freecodecamp.org/8-key-react-component-decisions-cc965db11594
[Accessed 29 Nov. 2018].

Ieee.org. (2018). ​Ethics and Compliance​. [online] Available at:
https://www.ieee.org/about/compliance.html [Accessed 12 Nov. 2018].

Jestjs.io. (2018). ​Jest · Delightful JavaScript Testing​. [online] Available at: https://jestjs.io/
[Accessed 29 Nov. 2018].

NPM. (2018). ​react-devtools​. [online] Available at:
https://www.npmjs.com/package/react-devtools [Accessed 5 Nov. 2018].

Postman. (2018). ​Postman​. [online] Available at: https://www.getpostman.com/ [Accessed
29 Nov. 2018].

ReactRouterWebsite. (2018). ​React Router: Declarative Routing for React​. [online]
Available at: https://reacttraining.com/react-router/core/guides/philosophy [Accessed 5
Nov. 2018].

Redux.js.org. (2018). ​Read Me - Redux​. [online] Available at: https://redux.js.org/ [Accessed
29 Nov. 2018].

Typescriptlang.org. (2018). ​TypeScript - JavaScript that scales.​. [online] Available at:
https://www.typescriptlang.org/ [Accessed 3 Nov. 2018].

Yarn. (2018). ​Yarn​. [online] Available at: https://yarnpkg.com/en/ [Accessed 29 Nov. 2018].

SDMAY19-02 26

4.3 APPENDICES

FIGURE 2: SEMESTER 1 GANTT CHART

FIGURE 3: SEMESTER 2 GANTT CHART

SDMAY19-02 27

FIGURE 4: SEMESTER 1 GANTT CHART DATES

SDMAY19-02 28

FIGURE 5: SEMESTER 2 GANTT CHART DATES

FIGURE 6: SEMESTER 1 BAR GRAPH BY DURATION

SDMAY19-02 29

FIGURE 7: SEMESTER 2 BAR GRAPH BY DURATION

SDMAY19-02 30

